Artículos
EFECTO TERMOELECTRICO

EFECTO TERMOELECTRICO

El efecto termoeléctrico es la conversión directa de la diferencia de temperatura a voltaje eléctrico y viceversa. Un dispositivo termoeléctrico crea un voltaje cuando hay una diferencia de temperatura a cada lado. Por el contrario cuando se le aplica un voltaje, crea una diferencia de temperatura (conocido como efecto Peltier). A escala atómica (en especial, portadores de carga), un gradiente de temperatura aplicado provoca portadores cargados en el material, si hay electrones o huecos, para difundir desde el lado caliente al lado frío, similar a un gas clásico que se expande cuando se calienta; por consiguiente, la corriente inducida termalmente.

 

Este efecto se puede usar para generar electricidad, medir temperatura, enfriar objetos, o calentarlos o cocinarlos. Porque la dirección de calentamiento o enfriamiento es determinada por el signo del voltaje aplicado, dispositivos termoeléctricos producen controladores de temperatura muy convenientes.

Tradicionalmente, el término efecto termoeléctrico o termoelectricidad abarca tres efectos identificados separadamente, el efecto Seebeck, el efecto Peltier, y el efecto Thomson. En muchos libros de textos, el efecto termoeléctrico puede llamarse efecto Peltier-Seebeck. Esta separación proviene de descubrimientos independientes del físico Francés Jean Charles Athanase Peltier y del físico Estonio-Alemán Thomas Johann Seebeck. El Efecto Joule, el calor generado cuando se aplica un voltaje a través de un material resistivo, es fenómeno relacionado, aunque no se denomine generalmente un efecto termoeléctrico (y se considera usualmente como un mecanismo de pérdida debido a la no idealidad de los dispositivos termoeléctricos). Los efectos Peltier-Seebeck y Thomson pueden en principio ser termodinámicamente reversibles, mientras que el calentamiento Joule no lo es.

 

Efecto Seebeck

El efecto Seebeck es la conversión de diferencias de temperatura directamente a electricidad.

Seebeck descubrió que la aguja de una brújula se desviaba cuando se formaba un circuito cerrado de dos metales unidos en dos lugares con una diferencia de temperatura entre las uniones. Esto se debe a que los metales responden diferentemente a la diferencia de temperatura, creando una corriente de circuito, que produce un campo magnético. Seebeck, aun así, en ese momento no reconoció allí una corriente eléctrica implicada, así que llamó al fenómeno el efecto termomagnético, pensando que los dos metales quedaban magnéticamente polarizados por el gradiente de temperatura. El físico Danés Hans Christian Ørsted jugó un papel vital en la explicación y concepción del término “termoelectricidad”.

El efecto es que un voltaje, la FEM termoeléctrica, se crea en presencia de una diferencia de temperatura entre dos metales o semiconductores diferentes. Esto ocasiona una corriente continua en los conductores si ellos forman un circuito completo. El voltaje creado es del orden de varios microvoltios por kelvin de diferencia. Una de esas combinaciones, cobre-constantán, tiene un coeficiente Seebeck de 41 microvoltios por kelvin a temperatura ambiente.

Termopotencia

La Termopotencia, potencia termoeléctrica, o coeficiente Seebeck de un material mide la magnitud de un voltaje termoeléctrico inducido en respuesta a una diferencia de temperatura a través de ese material, la termopotencia tiene unidades de (V/K), aunque en la práctica es más común usar microvoltios por kelvin. Los valores en los cientos de μV/K, negativos o positivos, son típicos de buenos materiales termoeléctricos. El término termopotencia es un nombre errado ya que mide el voltaje o campo eléctrico inducido en respuesta a la diferencia de temperatura, no a la potencia eléctrica. Una diferencia de temperatura aplicada causa portadores cargados en el material, si hay electrones o huecos, para difundirse desde el lado caliente al lado frío, similar al gas clásico que se expande cuando se calienta. Portadores móviles cargados migran al lado frío dejando atrás su núcleo inmóvil opuestamente cargado al lado caliente dando origen así al voltaje termoeléctrico (termoeléctrico se refiere al hecho que el voltaje es creado por una diferencia de temperatura). Puesto que una separación de carga también crea un potencial eléctrico, la acumulación de portadores cargados en el lado frío finalmente cesa en algún valor máximo ya que existe una cantidad de portadores cargados derivados movidos al lado caliente como resultado del campo eléctrico en equilibrio. Solo un incremento en la diferencia de temperatura puede reanudar una acumulación de más portadores de carga en el lado frío y así conllevar a un incremento en el voltaje termoeléctrico. Casualmente la termopotencia también mide la entropía por portador de carga en el material. Para ser más específicos, la capacidad térmica electrónica molar parcial se dice que es igual a la potencia termoeléctrica absoluta multiplicada por el negativo de la constante de Faraday.

Difusión de portadores de carga

Los Portadores de Carga en los materiales (electrones en metales, electrones y huecos en los semiconductores, iones en los conductores iónicos) se difundirán cuando un extremo de un conductor está a una temperatura diferente del otro. Portadores calientes se difundirán desde el extremo caliente al extremo frío, pues hay menor densidad de portadores calientes en el extremo frío del conductor. Portadores fríos se difundirán desde el extremo frío al extremo caliente por la misma razón.

Si el conductor dejara alcanzar el equilibrio termodinámico, este proceso resultaría en la distribución uniforme de calor a través del conductor (ver transferencia de calor). El movimiento de calor (en la forma de portadores cargados) de un extremo al otro se llama corriente de calor. Así como portadores de carga moviéndose, es también una corriente eléctrica.

En un sistema donde ambos extremos se mantienen a diferencia constante de temperatura (una corriente constante de calor de un extremo a otro), hay es una difusión constante de portadores. Si la razón de difusión de portadores calientes y fríos en direcciones opuestas es igual, allí no sería un cambio neto en la carga. Pero, la difusión de carga se dispersa con impurezas, imperfecciones, y vibraciones de la red cristalina (fonones). Si la dispersión depende de la energía, los portadores calientes y fríos se difundirán a razones diferentes. Esto crea una densidad mayor de portadores a un extremo del material, y la distancia entre las cargas positivas y negativas produce una diferencia de potencial; un voltaje electrostático.

Este campo eléctrico, sin embargo, se opone a la dispersión desigual de portadores, y se alcanza un equilibrio donde el número neto de portadores difundidos es cancelado por el número neto de portadores moviéndose en dirección opuesta desde el campo electrostático. Esto indica que la termopotencia de un material depende grandemente de las impurezas, imperfecciones, y cambios estructurales (el cual frecuentemente varía entre ellos mismos con la temperatura y el campo eléctrico), y la termopotencia de un material es la colección de muchos efectos diferentes.

Al principio los termopares eran metálicos, pero más recientemente dispositivos termoeléctricos se desarrollan de elementos semiconductores alternados tipo-p y tipo-n conectados por interconectores metálicos como se dibuja en la figura de abajo. Las uniones de los semiconductores son comunes especialmente en dispositivos de generación de potencia, mientras que las uniones metálicas son más comunes en medidas de temperatura. La carga fluye a través del elemento tipo-n, cruza una interconexión metálica, y pasa al elemento tipo-p. Si se suministra una fuente de potencia, el dispositivo termoeléctrico puede actuar como un enfriador, como en la figura izquierda de abajo. Esto es el efecto Peltier, descrito en la próxima sección. Los electrones en el elemento tipo-n se moverán a la dirección opuesta de la corriente y los huecos en el elemento tipo-p se moverán en la dirección de la corriente, ambos removiendo calor de un lado del dispositivo. Si se suministra una fuente de calor, el dispositivo termoeléctrico puede funcionar como un generador de potencia, como en la figura derecha de abajo. La fuente de calor conducirá electrones en el elemento tipo-n hacia la región más fría, así se crea una corriente a través del circuito. Los huecos en el elemento tipo-p fluirán entonces en la dirección de la corriente. La corriente se puede usar para impulsar una carga, así se convierte la energía térmica en energía eléctrica.

Espín de efecto Seebeck y baterías magnéticas

Físicos han descubierto recientemente que calentar un lado de una barra de níquel-hierro magnetizada permite a electrones reacomodarse según sus espines. Esto así llamado “espín de efecto Seebeck” podría dar lugar a baterías que generen corrientes magnéticas, en vez de corriente eléctrica. Una fuente de corriente magnética podría ser útil especialmente para el desarrollo de dispositivos espintrónicos, el cual usa corrientes magnéticas a fin de reducir el recalentamiento en chips de computador, pues, a diferencia de corrientes eléctricas, corrientes magnéticas no generan calor.

Usos

Las compañías de automóviles alemanas Volkswagen y BMW han desarrollado generadores termoeléctricos (GTE) que recuperan el gasto de calor de una máquina de combustión.

Según un informe del Profesor Rowe de la Universidad de Wales en la Sociedad Termoeléctrica Internacional, Volkswagen afirma 600W de salida del GTE en condición de conducción en autopista. La electricidad producida por el GTE es cerca del 30% de la electricidad requerido por el auto, obteniendo una carga mecánica reducida(alternador) y una reducción en el consumo de combustible de más del 5%.

BMW y DLR (Centro aeroespacial alemán) han desarrollado también un generador termoeléctrico impulsado por el tubo de escape que alcanza un máximo de 200 W y se ha usado exitosamente por más de uso 12000 km en carretera.

Sondas espaciales en el exterior del sistema solar hacen uso del efecto en generadores termoeléctricos radioisotópicos para generación de electricidad.

 



En Equipos y Laboratorio de Colombia estamos listos para asesorarle.

Redes sociales
Síguenos en Linkedin Llámanos en este momento para atenderlo. Instagram Conversemos aquí Síguenos en Facebook

Contáctenos
Teléfono(57)+604 4480388

Titulo..

Mensaje..

×